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Failure of the Harris criterion for directed polymers on hierarchical lattices
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Exact real space renormalization group analysis shows that the Harris criterion can be violated
for two randomly interacting directed polymers on a hierarchical lattice with branching factor b.
The interaction energy when the polymers meet on the same bond is random. For a particular case,
we find a negative crossover exponent ¢ for disorder when b > 2, even though the specific heat
exponent a is positive for b > 2 + 4/2. Other cases are also considered. General conditions for the
validity of the Harris criterion for this system are determined.

PACS number(s): 36.20.Ey, 05.40.+j, 64.60.Ak

I. INTRODUCTION

According to the Harris criterion, a small disorder at
the pure fixed point is relevant if the specific heat expo-
nent a at the pure transition point is positive and vice
versa [1]. However, this prediction is contested when, for
the disordered Potts model constructed on a particular
hierarchical lattice (Fig. 1) with asymmetric bond, the
disorder turns out to be relevant in a range of negative «
[2]. Comnsequently, it violates the corollary of the Harris
criterion that at the critical point of the pure system the
crossover exponent ¢ is equal to a [3,4]. Since real space
renormalization group (RSRG) can be implemented ex-
actly on hierarchical lattices [5,6] and this scheme can
be thought of as an approximate RSRG for Euclidean
lattices [7], the failure of the Harris criterion (see also
[8]) cannot just be ignored. Furthermore, based on the
results for the Potts model, a belief has emerged that the
Harris criterion can be violated only if there are asym-
metric bonds in a block [see Fig. 1(b)]. One of our aims
is to show that the myth is not necessarily true.

We consider the problem of two randomly interacting
directed polymers (DP’s) on hierarchical lattices with no
asymmetric bonds. DP’s are polymers with fluctuations
in the transverse directions and a special longitudinal
direction along which they are stretched. By choosing
various forms of disorder, we show that the relevance or
irrelevance of disorder is not very simply dictated by the
sign of 2 — dv or a, where v is the correlation length
exponent and d is the relevant dimension. We show that
the crossover exponent need not be either of the two.

There have been a lot of studies on directed polymers
in random media or with random interaction because of
the simplicity of the system [9-11]. It has been shown
that the randomly interacting case enjoys the rather
unusual property of solvability via RG, with nontrivial
phases [10,11]. This makes them an important object for
further studies.
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We define the pure and the random models in the next
section. The RG scheme for the pure case is discussed
in Sec. III. Section IV deals with the RG of the random
problem. Our interest here is in the behavior of the dis-
order near the pure critical point, and the applicability of
the Harris criterion. In Sec. V, a general framework is de-
veloped to rationalize these results. In this way we can
show under what conditions a hierarchical lattice with
no asymmetric bond can lead to a violation of the Harris
criterion. We, in the process, identify the appropriate
quantity that determines the relevance or irrelevance of
disorder. Since, as already mentioned, the exact RG on a
hierarchical lattice can be thought of as an approximate
Migdal-Kadanoff scheme on a real lattice, the inequali-
ties obtained in this section would be applicable to such
approximate schemes also.

II. MODELS: PURE AND RANDOM

The recursive construction of the hierarchical lattice of
generation n needs a replacement of each bond of genera-
tion n—1 by a motif of N bonds [6]. See Fig. 1. The effec-
tive dimension is generally taken as deff = (InN)/In2.

n=0 n=1 n=2

(@)

(b) (c)

FIG. 1. (a) Construction of hierarchical lattice with b = 2.
RG procedure takes a lattice from the right to the smaller
one on the left. For model B, similarly marked bonds have
identical energies. (b) A motif with an asymmetric bond. (c)
A special choice of randomness for b = 3 (see text, Sec.V).
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In this paper, we consider only lattices with N = 2b, as
in Fig. 1(a).

We place two interacting DP’s on a hierarchical lattice.
They start from one end of the lattice and meet at the
other end. There is an attractive interaction —v (v > 0) if
a bond of the lattice is shared by the two DP’s. As in real
space, here also the DP’s undergo a binding-unbinding
transition for b > 2.

Randomness is introduced by allowing the interaction
energy to be random on each and every bond. The first
model, model A, has independent random energy on all
the 2b bonds. The randomness in the second model,
model B, is taken only along the longitudinal direction so
that equivalent bonds on all directed paths have identical
random energy [see Fig. 1(a)]. Model B is a hierarchical
lattice version of the continuum model of Refs. [10,11].
This model B is also relevant for localization of an inter-
face near a wall (wetting), which has been studied in the
past [12]. Other generalizations are also considered.

III. PURE PROBLEM: RENORMALIZATION
GROUP

The pure problem can be solved easily by a RSRG
approach where one needs only the renormalization of the
Boltzmann factor y = exp(F) (T being the temperature
in units of the Boltzmann constant). Let y, and y,_1
be the renormalized weights at the nth and (n — 1)th
generation. By decimating the diamonds the recursion
relation is given by

Yn—1 = (y5 +b~1)/b. (1)

The two fixed points of the quadratic recursion relation,
Eq. (1), are 1 and b —1 of which the larger one is the un-
stable fixed point representing the transition point. Since
y > 1 there is a transition at y. = b — 1 only for b > 2.
The other fixed point y* = 1 corresponds to the high
temperature limit.

The length scale exponent v can be obtained from
2% = dy,_1/dyn |y. which gives

In2
Y= mpG-1)/8 )

Since the polymer is a one-dimensional object, the exten-
sivity of the various thermodynamic quantities are with
respect to the length of the chain (e.g., specific heat per
bond). Standard rules [7] then give the specific heat ex-
ponent from the singular part of the free energy as

In2

Thpe-n/m 0" @

a=2

which vanishes for b = 2 + /2. Note that a < 0 for b <
2++/2. It is clear that hyperscaling holds good with d = 1
and not the effective dimension d.s¢ of the lattice. As in
the real space case, the length scale exponent v may be
interpreted as the exponent describing the growth of the
average distance along the length of the chain between
two shared bonds.
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FIG. 2. Data collapse of E,, in terms of appropriate scaled
variable for b = 4.

It is also gratifying to observe that the same v describes
the finite size scaling form for any thermodynamic quan-
tity [13]. For example, the recursion relation for the
average energy E, at the nth generation is

Enp1=7 2* (4)

where Z,.1 = (Z2 + b — 1)/b with Z, = y. At the
critical point y = y., the growth of the energy is given by
E, ~ L1*® where L,, = 2" is the length of the polymer,
and z = (In2)"!'In[2(b—1)/b] — 1. This value of the
exponent agrees with the finite size scaling prediction of
z = (a—1)/v. Furthermore, Fig. 2 verifies, through data
collapse, that for y # y. the energies for small generations
do obey a finite size scaling form E,, /L, = LZ f(L,ll/Vy),
where y = y — y., with the same v as in Eq. (2).

IV. RANDOM CASES

For the disordered case, the recursion relation for the
Boltzmann weight can be written as

Yn-1 = b2 (DYl + yFVY PR 4y Py 1)
+(b - l)b—17 (5)
where y$?) is the Boltzmann weight in the nth generation
for the disorder on the upper (7 = 1) or lower (j = 2)
part of the ith branch as in Fig. 1. To understand the
effect of the disorder at the pure critical point we intro-
duce a small disorder y,(-jj ) = Ye + €9, The average of
the disorder, €, acts like the temperature as it measures
the deviation from the pure critical point. (Henceforth,
the disorder averaged quantities will be denoted by an
overbar.) The second moment is the measure of disor-
der. In principle, one should look at the variance, but at
the pure critical point the variance would be the same as
the second moment. Since our motivation is to find the
flow of the disorder at the pure fixed point, we need only
study the first two moments. Therefore, we do not have
to specify the full distribution, the only requirement is
the existence of a finite and small variance.
The crossover exponent for the disorder is defined
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through the homogeneity of the singular part of the free
energy in terms of the scaling fields y; (temperature) and
p2 (disorder). Under decimation, the free energy behaves
as

1 —a
faing(p1, p2) = Efsing(/\lﬂlaA%U«Z) = 127G (p2/1d),

defining ¢. The scale factors Ay 2 are obtained from
the eigenvalues of the matrix M with elements Mj,; =

Ok _, /O¢l,, where €}, is the [th moment in the nth genera-
tion. The crossover exponent is given by ¢ = In A2 /In A;.

Let us first consider model A for which energies are in-
dependently random on all bonds. Restricting ourselves
to the first two moments, the elements of the 2 x 2 matrix
M are obtained from Eq. (5). This matrix is diagonal at
the pure fixed point, € = 0, €2 = 0. The eigenvalues are
then

A =2(b—1)/b and Ay = 2y2/b%. (6)

The largest eigenvalue A; determines « in agreement with
Eq. (3). The crossover exponent

¢ = {In[2(b — 1)/b]} " In(2y2/b°) (7)

is negative for all b > 2, implying irrelevance. Note that
¢ # a but it is equal to 2 — dcggr. It is a simple exercise
to show that at the pure fixed point if the second moment
is irrelevant then so are all the higher ones. We skip the
details.

For model B, the above procedure gives Ay = 2y2 /b2,
and \; the same as model A. The crossover exponent is

¢ =In2(b— 1)?/8?] {ln2b— 1)/} (8)

Now we see, for model B, that ¢ = a and not 2 — desysv.

Since the randomness in model B is highly correlated,
the Harris criterion is less expected to be valid here as
opposed to model A. Oddly enough, it turns out to be
so. The difference between the two cases begs for a fur-
ther study of the flow diagram in the € and €2 space.
The important feature to keep in mind is the instability
of the larger root of a quadratic map. If the nontrivial
fixed point of €2 at € = 0 is in the unphysical negative
region, then disorder has to be relevant. But if it is in
the physical region (i.e., €2 > 0), the disorder becomes
irrelevant.

V. GENERAL FORMULATION

In order to construct a general framework for predict-
ing the validity of the Harris criterion, we start with the
Taylor expansion of the recursion relation of Eq. (5). If
N is the total number of bonds in a block (2b in our ex-
amples) and if the recursion relation has the permutation
symmetry in the bonds, then

e=gab)(er+e2+ -+ en) +O() +---,  (9)

which defines g,(b). Simple arguments show that g,(b)
determines o whose positivity is guaranteed if
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ga(b) > \/EN_I.

This gives the critical b as found after Eq. (3).

The requirement for the relevance of the disorder
comes from the flow diagram in the €, €2 parameter space.
Now, suppose that the bonds are grouped in n sets with
N; bonds in the ith group such that the members of a set
have the same randomness. Obviously Y  N; = N. This
implies that €€; = 0 if ¢ and j belong to two different
sets. Starting with a narrrow distribution, the relevance
of the disorder at the pure transition, i.e., at € = 0, re-
quires

(10)

ga(b) > (NF + N3 +---+ N2)~1/2, (11)

Hence, the Harris criterion holds good if either

g.(b) > max [\/EN“l, (Z Nf)_m] ,

) gs(b) < min [\/§N‘1, (Z Nz?)—l/z] .

Let us now consider the models case by case. For model
A, we have N = 2b and N; = 1 Vi, since all bonds have
independent randomness. We see that g,(b) = (b —1)/b?

always satisfies the inequality % < gs(b) < ﬁ if b >

2+4+/2 and therefore the Harris criterion is violated in this
regime. For model B, n = 2 with N; = b. Consequently,
it is the same limits for Egs. (10) and (11) and therefore
the Harris criterion applies in toto.

If the disordered models are classified by + according
to the sign of «, and I (R) for irrelevance (relevance) of
disorder, then the Harris criterion suggests the existence
of only two classes (+R) and (—I). On the other hand,
the above inequalities allow special classes like (+I) and
(—R) where the Harris criterion fails. Model A is in the
(+1I) class for b > 2+ v/2. Model B is in either the (+R)
or (—I) class depending on b.

It is possible to construct disorder models that can be
in any of the four classes mentioned above. For example,
take b = 3, and out of six take five bonds to have the same
random energy while the other one has an independent
randomness, as, e.g., in Fig. 1(c). That is, n = 2 with
N; = 5,N, = 1. This gives ¢ = 0.868812... which is
neither a nor 2 — dv. The model belongs to the (—R)
class.

Since >°0_, N; = 2b, 37, N2/(4b%) > 1/n, yielding
¢ > 2 —v(lnn)/In2. The equality in both cases is valid
only when all the N;’s are equal (i.e., N; = 2b/n). In
this particular situation, it is natural to interpret ln; n
as the effective dimension d, of the random bonds. In
such a case, ¢ = 2 — d,v, with models A and B serving
as the two extremes. Such a simple interpretation is not
possible if the N;’s are not all equal.

(12)

VI. SUMMARY

To summarize, we have shown that, for randomly in-
teracting DP’s on hierarchical lattices, it is not a but g,,
the derivative of the recursion relation of the pure prob-
lem, that controls the relevance or irrelevance of disorder.
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Needless to say that g, also determines «. As a result,
there is the possibility of violating the Harris criterion,
and we have explicitly constructed several such models.
They do not require any asymmetric bonds. This analy-
sis can be extended to asymmetric systems also.
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